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Abstract  

Glass Tube is one of the main components for fluorescent lamps as it contains all the 

other components to generate light. Glass tube industry faces a decline in demand in Egypt. This 

is attributed to two factors: currency floating and new lighting technologies. In response, glass 

tube manufacturers decided to diversify their products. This required the integration of Make-to-

Stock (MTS), which is used usually for glass tube manufacturing, and Make-to-Order (MTO) 

which is used to fulfill demands for diversified products. In this thesis, Production policy is 

proposed to plan for MTS & MTO production. This policy determines when to produce broken 

glass (cullet), MTS product or MTO product. Priority is given to Cullet which is used as raw 

material in glass making. The second choice is to produce MTS product, and excess capacity is 

used to produce MTO products. Once MTO order is fulfilled, the choice is made to either 

produce cullet or MTS product. The policy defines two levels for cullet inventory and MTS 

product inventory. If cullet inventory reaches the lower level, cullet will be produced until the 

inventory level reaches higher level. If the cullet reaches the higher level or the level is 

decreasing towards lower level, products will be produced. The type of product is determined 

according to the inventory level of MTS product. If the MTS inventory level is lower than high 

inventory level, MTS product will be produced. Once it reaches high inventory level, MTO 

product will be produced. A simulation model is developed to simulate glass tube production. 

The model is divided into three interconnected modules: production, order fulfillment and 

decision.  The model was verified and validated through different cases. Based on the simulation 

model, an optimization algorithm is applied to select optimum parameters for proposed policy 

with the objective of minimizing total costs. The proposed production policy proved its 

effectiveness in reducing total cost in glass tube manufacturing. Sensitivity analysis was 

performed to show the effect of raw material prices and energy price on the solutions obtained by 

optimization algorithm. Increase in raw material prices has effect on production parameters; 

however, it has no effect policy parameters. Increase in energy prices has effect on production 

parameters and policy parameters.  
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Chapter One 

Introduction 

1.1 Background  

This thesis considers a hybrid Make-To-Stock (MTS) and Make-To-Order (MTO) 

production in glass tube manufacturing systems. Hybrid systems allow for better utilization for 

available equipment which leads to cost reduction. Hybrid systems provide the flexibility to 

produce different products using available capacity. Production planning for hybrid systems 

requires a lot of effort in order to maximize the benefit from using hybrid system and ensuring 

steady production operations. 

Production planning for hybrid systems problem was motivated by a situation at Al –

Araby group which is a main producer for fluorescent lamps in Egypt. It has two factories that 

are complementing each other:  the glass tube factory and the lamps factory. The glass tube 

factory converts the raw material into glass tubes which will be used further as a component in 

the production of fluorescent lamps at the lamps factory. Glass tubes are to be assembled with 

different components to make lamps. Production at glass tube is continuous without stoppage, 

and lamps production is a discrete.  

1.1.1 Glass Tube Manufacturing 

Glass basic manufacturing processes starts with receiving of raw materials and storing 

them in warehouses. Raw materials are divided into natural material such as silica sand, and 

synthetic material such as soda ash and glass cullet. This step is followed by mixing the raw 

material to get homogeneous blend of raw materials to get uniform properties of glass tube. By a 

screw machine, raw materials mixture is fed to the furnace to be melted till it becomes liquid. 

The furnace works continuously without any stoppage except for preventive maintenance. 

Preventive maintenance for the furnace occurs for three weeks each year. Melting process is 

done using four natural gas burners, which work sequentially. 

Glass tube formation starts by the flow of molten glass over the sleeve which is hollow 

rotating cylinder. At the same time, air is blown to form the shape of tube. The dimensions of 

glass tube are determined by the rotation speed of the sleeve, the amount of air blown, the glass 
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pull rate and the amount of glass flown in the sleeve.  After forming the straight glass tube, tubes 

are cut into the required lengths along a conveyor. The conveyor allows the glass liquid to cool 

down and becomes solid. Several machines are set along the conveyor: a cutting machine, 

glazing machine and cullet removal machine. At the end of the conveyor, packaging is done 

manually by two workers where are stacked in a group of 90 tubes. Handling and packaging 

produce a lot of defects. After that, glass tubes are stored as shown in Fig. 1.1.  

 

Figure 1.1: Glass Tube Manufacturing Process 

1.1.3 Glass Tube Market  

Glass tube industry faces a huge problem as a result of decrease in demand. New lighting 

technology has emerged which attracted a lot of the demand of lighting business such as LED 

technology. Besides, the government is leading a campaign to reduce the energy used in lighting. 

According to the annual report of the ministry of electricity and renewable energy year 2014-

2015, the ministry made a contract, dated 8/4/2015, with the Arab Organization for 

Industrialization to supply 3.9 million high efficient street lighting [1]. The ministry also issued a 

contract to supply 13 million LED lamps for residential use.  

Al-Araby glass factory was built with predefined capacity to meet local glass tube 

demand at that time when there was no LED technology. In the past, Al-Araby glass factory was 

producing a constant quantity of glass tubes (Make-To-Stock) which is used by Al-Araby lamps 

factory. That results into higher unused capacity.  After new market shift towards LED 

technology, the demand for glass tubes has decreased. Therefore, the management decides to 

accept Make-To-Order (MTO) product demand.  

1.1.4 Economic Environment Changes 

The Egyptian government embarked an economic reform program as a result of severe 

problem of short-aging of hard currency. With the assistance of the International Monetary Fund 

Raw 
Material 
Mixing 

Melting  
Glass Tube 
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Cutting & 
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Packaging Storage  
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(IMF), the Egyptian government formulated the reform program, and in return the government 

receives $12 billion to promote the economy [2]. According to Egyptian Ministry of Finance, 

The reform program is based on four pillars. The first one is monetary adjustments through 

liberalization of exchange rate, strong fiscal consolidation to ensure the stability of public debt 

and monetary plan to contain inflation. The second pillar is to increase social safety measure in 

form of food or cash transfer subsidies. The third pillar is based on structural reforms to increase 

growth through encouraging investments. The last one is to close financing gaps.  

As a result of liberalization of exchange rate, the currency was devalued significantly 

compared to US dollars [2]. Besides, inflation increased significantly to reach more than 30 per 

cent. The government imposed new taxes such as Value added tax (VAT), and new tariffs on 

roads and mines resulting in increase in raw material cost. Besides, the program includes 

removing any subsidies on energy supplies. New measures taken by Egyptian government led to 

increase in raw material costs and utilities costs which represent a business risk to the industrial 

sector.  

1.2 Problem Statement  

Under Egyptian economic circumstances, the Glass Tube factory decided to produce custom 

orders for customers other than Al-Araby lamps factory to maximize the utilization of available 

capacity. Accordingly, the factory will produce glass tubes using Make-To-Stock (MTS) and 

Make-To-Order (MTO) methods to minimize total cost. Production planning decision about 

glass pull rate and ratio of glass cullet in the batch are critical to minimize the cost. There are 

main limitations to glass tube production, which include: 

 The furnace shall work continuously without any stoppage.  

 Constant liquid glass level must be maintained inside the furnace. 

 Space allocated for raw materials and final products warehouses is confined.  

 Different glass tube products have different specifications.  

 Make-to –Stock (MTS) demand must be satisfied.  

 Glass pull rate and cullet ratio have specifications limits. 

 Changes in glass pull rate and cullet ratio is limited.     



www.manaraa.com

 

4 
 

1.3 Research Scope and Objectives 

This research covers glass tube production processes including melting, glass tube 

formation, cutting and glazing, and storage. Besides, order fulfillment is included whether it is an 

order for MTS product or MTO product. 

The research aims to develop a decision support tool to manage glass tube MTS and MTO 

products manufacturing. Simulation model is developed to simulated glass manufacturing and 

decisions for production. Simulation-based optimization is used to optimize policy parameters 

and production parameters to minimize cost. 

1.4 Research Significance  

This research develops a policy that helps the management to make production decisions. It 

develops an easy-to-use simulation model to evaluate policy parameters. The model takes into 

account variability inherent in glass tube demand.  

Optimized production policy minimizes cost for producing glass tubes. This will help glass 

tubes to survive in current market conditions and competition with new developed lighting 

technologies.  This policy assists in better utilization for current equipment. This increases the 

ability to produce variety of glass products.  

1.5 Thesis layout  

Thesis is organized in nine chapters. The first chapter is the introduction. The second 

chapter includes literature review for MTS/MTO planning problem and simulation using discrete 

event simulation. The third chapter includes problem description. Chapter four represents 

simulation model developed. Verification and validation for simulation model are presented in 

chapter five. Simulation-based optimization algorithm is developed through chapter six, where 

sensitivity analysis for solutions obtained from optimization algorithm is developed in chapter 

seven. Chapter eight concludes the work done and findings. References are listed in the last 

chapter. 
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Chapter Two 

Literature Review 

This research proposes a production policy to control the production of hybrid glass tube 

manufacturing systems. It uses simulation to simulate proposed policy parameters. Literature 

outlines similar problems in different situations. Literature review includes different sections 

which are MTS and MTO hybrid production systems, discrete event simulation applications in 

manufacturing, continuous flow simulation using discrete event simulation and other methods 

used for hybrid systems optimization.  

2.1 MTS/MTO hybrid production strategy  

Tsubone et al (2002) [3] designed a production planning system that combines both 

modes of production: MTS and MTO. The main objective is to shorten the manufacturing time 

of MTO products. The study takes into consideration order quantity routing, unit processing time 

and buffer capacity. The study doesn’t include setup time between different products. The 

objective didn’t consider minimizing cost.   

Soman et al (2006) [4] developed a framework to manage an environment which uses 

both production strategies: make-to-stock and make-to-order. The study considers applying this 

framework for production planning and inventory control for a food processing factory which 

produces more than 230 products. The framework includes applying at first demand variability to 

select orders with low variability and high volume. This is followed by medium-term capacity 

planning through applying economic lot scheduling problem (ELSP). Finally, detailed schedule 

of MTO products along with MTS products. The research lacks analytical tool to support 

decision making process.    

Kalautari, et al (2010) [5] presented a decision support system which assists in order 

acceptance/rejection decision. The system consists of five steps. The first step is to prioritize 

customers using a fuzzy TOPSIS method. This is followed by estimating the rough-cut capacity 

and rough-cut inventory based on capacity and material availability. At the third step, prices and 

delivery time is estimated using MILP model. The following step includes a set of proposed 

guidelines to help the organization to negotiate with customer over prices and due dates. If the 
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order is accepted detailed scheduling is prepared at the fifth step. Research lacks providing 

analytical tools to support decision making process.  

Zhang et al (2013) [6] developed analytical model to minimize the total cost of hybrid 

MTS/MTO production facility by selecting the inventory and capacity parameters. The facility 

consists of multiple machines which can be partially loaded by MTS or MTO products. The 

model is based on multi server queuing model where there is dynamic switch between MTS and 

MTO production via congestion switching policy. The setup time due to switch between 

products is negligible. The study proved that the hybrid system gives better results when there is 

low demand for products. The research considers discrete production where some machines can 

switch between MTS product and MTO product which is not the case for glass tube 

manufacturing.  

Chen et al (2014) [7] developed a model which considers the co-optimization of 

inventory policy and prices of products of a facility which produces two of products which are 

MTS and MTO products. The main objective of the model is to maximize the discounted profit 

of the facility over infinite planning time horizon. The model was formulated based on 

Markovian decision analysis. The study neglects any setup time due to switching from one 

product to another.  

Khakdaman et al (2014) [8] developed a robust optimization for multi-product multi-

period production planning for a combined MTS-MTO production modes. The study takes into 

consideration uncertainties related to suppliers, operations and customers. This includes raw 

material costs, exchange rate, production cost, inventory holding costs and customer demand. 

The study develops linear deterministic model, and then it transforms the model into robust 

optimization model.  

2.2 DES Application in Manufacturing  

Pidd et al (1987) [9] developed a simulation model for automated food plant which can 

be used for small batch manufacturing facility and for continuous production facility. The model 

showed that simulation can be used for existing manufacturing plants and help in design new 

plant. The paper didn’t show how to handle continuous/discrete hybrid system of producing 

food.  
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Fiorini et al (2005) [10] developed a simulation model to assess the investment plan for 

expanding production in CST factory. CST produces steel slabs and many other semi products 

made of steel. The factory utilizes two blast furnace, two converters and continuous casting 

machines. Expansion plan involved increasing production capacity to 7.5 Mt/y of slabs. Besides, 

expansion involves adding new equipment such as a third blast furnace, third converter, third 

continuous casting machine, coke oven battery, etc. the model was made realistic that it included 

machine failure, maintenance, schedules, etc. 

Sharda et al (2008) [11] developed discrete event simulation model for reliability 

modeling of a chemical plant. The model identifies the impact of certain policies to enhance the 

reliability of equipment in the plant. The model could assist in determining the effectiveness of 

changing policies in terms of installing new equipment or changing inventory control policies. 

The plant produces 15 different products through 40 different subsystems. The production 

processes are continuous and discrete, and they are raw product loading, raw product mixing, 

reaction, raw product washing, drying, blending, storage and final packaging. The model was 

developed using ExtendSim. Paerto chart is developed then to show the most influential factor 

on plant reliability.  

Park et al (2008) [12] developed simulation based planning and scheduling system for 

LCDs at one of Samsung factories in Korea, and it is called DPS system. DPS system is 

developed for daily planning and scheduling of LCD manufacturing due to continuous 

production of LCD. It encompasses filtering capacity, simulating operations, obtaining detailed 

loading scheduling and analyzing KPIs regarding the operations. The system didn’t include long-

term business risks. It focuses on daily or weekly planning and scheduling.  

Liong et al (2016) [13] developed a model simulating the manufacturing of chili sauce 

using Arena software. The model was to compare current production processes with suggested 

new scenarios for improvement. The model considers only the operations of the factory. It 

doesn’t include the inventory control of the factory. The model shows the utilization of each 

resource deployed in the process for each scenario. It also shows the average waiting time, 

processing time for each process.  
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2.3 Continuous Flow Process Simulation Using DES 

Simulation techniques were implemented extensively in manufacturing field. Many 

chemical and fast moving consumers’ goods (FMCG) are continuous flow process. There are 

different approaches were developed to model continuous flow. Continuous flow was 

approximated using discrete event simulation which makes the computation work much easier. 

Lefrancois et al (1991) [14] developed a model to optimize the annealing operations of 

rolling mill facility. A simulation model is based on discrete event simulation which allows 

subroutine integration to optimize job scheduling and sequencing of various products produced 

by the rolling mill. Multi-objective model to optimize the annealing operations is constructed and 

it considers inventory holding costs, overall annealing operations and the overall efficiency of 

annealing furnaces.  

Semenzato et al (1995) [15] developed a discrete event simulation model for sugar cane 

harvesting operations. The model includes a sequence of discrete processing units and considers 

the failure of allocated resources. The model is beneficial in determining the minimum resources 

for harvesting operations.  

Also, Watson Edward (1997) [16] developed a simulation model for batch process in 

chemical plant. The model is based on discrete event simulation where continuous processes 

were approximated by discrete event modeling. The model was developed to assess new design 

implemented on decreasing cost and increasing throughput. The model gives feedback about 

design and operational parameters such as quality, customer satisfaction and flexibility to 

respond to quick order.  

Arer et al (1999) [17] used simulation model to compare between different capacity 

expansion and sequencing alternatives for a sheet metal factory. The case study considers a 

subsystem of the factory which considers continuous sheet casting, cold rolling and annealing. 

The subsystem is a combined discrete and continuous system; therefore, two different models are 

developed: continuous model and discrete model. The continuous model is developed to find 

processing times and setup times. The discrete model is responsible for capacity analysis and 

studying the effect of sequencing. The model takes into considerations the product mix which is 
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the result of changing the thickness of the sheet. Therefore, setup times are taken into 

consideration in the model.  

Barton et al (2000) [18] proposed a new approach to discretize continuous simulation 

which is called discrete quantity approach (DQA). Conventionally, continuous system is 

approximated to discrete system with respect to time. DQA suggest discretizing the continuous 

system with respect to quantity instead.  This approach is very useful in the case of having 

varying flow rate.  

Kuo et al (2001) [19] built a model which simulates continuous flow of chemical plant 

products, storage in silos and discharging to trucks using discrete-event simulation.  It is 

proposed to discretize the flow into fixed volumetric units that occurs between fixed time 

intervals. The model considers that the rate of flow is constant throughout operations. 

Schlultz, Scott (2006) [20] developed simulation model for a glass float production line. 

The float line starts with a continuous process of liquid glass flowing out from furnace to cooled 

conveyor in shape of continuous ribbon of glass. After that, glass ribbon is cut into individual 

stream of products according to cutting algorithm; this process is pure discrete. The first obstacle 

in modeling is the combined continuous-discrete nature of the process. It was proposed to 

neglect the furnace modeling because glass furnace works without any shutdown. Therefore, the 

model focuses on the conveyor system. The model can be used for different applications such as 

cutting schedule analysis, sequencing algorithms comparison, cost study and scrap study.  

Fioroni et al (2007) [21] proposed a technique to model continuous process using discrete 

event modeling. Continuous flow can be approximated by larger volume flow with larger inter-

arrival time. In other words, volumes vary by steps of time not continuously. This approach is 

applied to Brazilian Steelmaking Company to verify that discrete approximation is effective. The 

study was implemented using Arena software.  

Melouk et al (2013) [22] developed a real application simulation-based optimization 

model for steelmaking industry using Arena software. There is a need in steel manufacturing 

field to reduce costs due to increase in raw material prices and increase in global competition. 

The model investigates changes in design and operations of steelmaking facility to reduce cost 

and monitor inventory levels to reduce associated costs. The study involves experimentation 
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used to optimize work-in-progress inventory only in order to reduce costs. The study provides a 

sensitivity analysis of the holding cost inventory and the daily total cost of operations.  The study 

didn’t cover the hybrid production systems for steel manufacturing.  

Bursi et al (2015) [23] proposed an approach to model continuous flow using discrete 

event simulation (DES) through discrete event system specification (DEVS). The proposed 

model is to model is to simplify the continuous flow using discrete model which describes three 

main behavior of the system: failure and repairs, working speed and accumulation and 

throughput time base unit model for continuous flow is work centers which operate continuously 

with maximum speed and without buffer, and conveyor units with zero accumulation. This case 

doesn’t apply for glass production systems as there is no shutdown for the furnace.  

Asbjornsson et al (2016) [24] developed a simulation model for performance evaluation 

of crushing plant. Crushing production units are subject to frequent wear and failure due to harsh 

operating conditions. The model integrates discrete event simulation and continuous time 

simulation. The model develops a discrete event simulation for downtime of production units 

which will be the input to continuous time simulation. Mathematical models were developed for 

each production unit such as crushing. These models describe the changes in material flow and 

changes in particle sizes throughout the plant. Stochastic optimization model by genetic 

algorithm is formulated to find optimum operating conditions.  

2.4 Other Methods for Continuous Process Optimization 

Almada-Lobo, et al (2008) [25] developed also an optimization model considering 

production planning and scheduling problems of colored glass containers manufacturing. 

Changing the color of containers causes a lot of setup time to prepare for required ingredients 

suitable for the new color. The objective of this study is to minimize average inventory level, 

setup time and number of stock out. The model considers different variables which consider the 

duration of specific color batch inside the furnace, sequence of batches and inventory. Near 

optimum solution for weighted objective function was achieved using a variable neighborhood 

search technique (VNS). The developed model didn’t consider having hybrid manufacturing of 

glass containers. 
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M. Faragallah and A. Elimam (2017) [26] developed an integrated optimization model 

for glass tube & florescent lamps at el-araby group. The model comprises all production steps 

from raw material mixing, continuous flow of glass furnace and inventory. Considering raw 

material mixing, the model optimizes each raw material composition in the batch while 

considering required quality of glass produced such as density and thermal expansion. The 

second part of the model deals with continuous flow glass furnace as it optimizes the inventory 

and crushed glass tube costs while considering inventory balance, safety stock of glass tubes and 

acceptable ranges of the glass pull rate, glass tube thickness and length. The third part of the 

model deals with end forming and fluorescent lamps discrete production. Total production and 

inventory cost of end formed tubes is minimized while meeting the requirement of inventory 

balance and safety stock.  The model was formulated initially as nonlinear model and using 

separable programming the model as linearized. The model didn’t take into consideration the 

variability of demand or customization of products. The model didn’t handle the problem for 

hybrid glass tube manufacturing systems.  

In this thesis, production policy for glass manufacturing using hybrid production system 

MTS and MTO is proposed, and it takes into account the uncertainty in demand. This is different 

from research developed by M. Faragallah and A. Elimam (2017). They considered the 

production for MTS products only with deterministic demand. Besides, this research approach is 

different from approaches developed by Soman et al (2006) or Kalautari, et al (2010). They 

developed hierarchical framework for hybrid production systems which lack analytical decisions 

aids. However, this research provides computational work to support decisions-making process. 

Besides, this research represents easy to use simulation model that provides simulation-based 

optimized policy parameters to management to use. On the other side, different algorithms 

developed such as linear deterministic programming model by M. Faragallah and A. Elimam 

(2017) and by Khadaman et al (2014), and variable neighborhood search technique (VNS) by 

Almada-Lobo, et al (2008) are complicated models which requires deeper knowledge of 

programming. This research consider modeling of continuous flow of glass as discrete where 

larger quantities of glass flow between fixed time interval similar to approach developed by Kue 

at al (2001); however, Kue et al (2001) considered a case of silos used for storing chemical 

material, and then discharging this material when needed. This is different from our approach 

where charging and discharging of the furnace can happen simultaneously that the glass level 



www.manaraa.com

 

12 
 

inside the furnace remains constant. The modeling of the furnace is neglected similar to the 

approach used by Schlultz, Scott (2006). Moreover, Faragallah and A. Elimam (2017) considered 

the effect of cullet ratio on energy consumption only where this research considers the effect of 

glass pull rate and cullet ratio on energy consumption used for melting.  

In conclusion, this research aims to develop easy to use production policy which 

considers hybrid production glass tube manufacturing system. The tool shall provide analytical 

results, and consider uncertainties in demand.  
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Chapter Three  

Problem Description and Methodology  

3.1 Problem Description  

This research considers the production planning decisions for hybrid glass tube 

manufacturing systems at Al-Araby glass factory. Al –Araby group, an Egyptian joint-stock 

family enterprise established in 1964, is a main producer for fluorescent lamps in Egypt. 

Originally, the factory was designed with a capacity to produce glass tubes using MTS 

production system that suits the demand of fluorescent lamps factory. Due to advances in 

lighting technology and governmental campaigns for energy savings, the demand for glass tubes 

has declined. Decline in glass tube demand leads to lower capacity utilization as manufacturers 

tend to lower the production rate to the minimum. To overcome new market conditions, glass 

tube manufacturers decided to diversify products using MTS and MTO hybrid manufacturing 

systems. 

The capacity of the factory is governed by the capacity of the furnace which can produce 

between 550 to 800 kg/hr. of glass. There is no plan to change manufacturing capacity to match 

current demand. The furnace must work on a fixed level of material which is 90 tons. Therefore, 

raw material      flows continuously inside the furnace. There is no stoppage allowed for glass 

tube manufacturing as stoppage will cause break down of the furnace. The planning horizon (T) 

for this research is one month. This time horizon is divided into smaller units of time (t) which is 

hour.  

The factory can produce different products ( ): a set of MTS products     and a set of 

MTO products   . Each product ( ) has different specification: length   , diameter   , 

thickness   , and mass   . Each of the previous parameters has upper specification limit and 

lower specification limit. For example for the length, the limits are     
 , and     

 .  

For product     , demand quantity   
  is fitted into a normal distribution N (µs,i , σ

2
s,i). 

Based on the production schedule of fluorescent lamps factory, the production schedule is 

developed for MTS products   . The factory supplies MTS products   
  to fluorescent lamps 

factory according to agreed production schedule.  
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For product     , demand quantity   
  is defined by normal distribution N (µo,i , σ

2
o,i). 

The factory receives the orders in the beginning of the month in order to schedule for the 

production of the required product. The factory can supply the required demand in different 

quantities   
 , and delivery is done once per month. Setup time is neglected when change is done 

to the type of product. There is no safety stock for MTO products   . 

The factory can control the production rate by controlling glass pull rate at any given 

time (      ) and glass cullet ratio in the batch (     ). Glass pull rate is the amount of glass that 

are produced form the furnace per unit time and it is normally distributed N (µgpr(i,t) , σ
2

gpr(i,t)). 

Glass cullet is the amount of recycled glass which is used for the production of glass. Change in 

Glass Pull Rate and cullet ratio affect the level of energy consumed during production as shown 

in Fig. 3.1 [27]. 

 

Figure 3.1: Fuel Consumption, Pull Rate and Cullet Ratio Relation [27] 

There is limitation to change in glass pull rate and glass cullet ratio. Glass Pull Rate can 

vary between two values which are practically accepted at the factory       and     . Besides, 

Glass pull rate at a given time (   ) is allowed to change by a certain amount (    ) from the 

value at time ( ). The amount of GPR change (ΔGPR) depends on whether it is increase or 
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decrease. In the case of decrease, ΔGPR is limited by amount      , and in the case of increase 

it is limited to      . During changing glass pull rate, all products, produced form the furnace, 

are crushed for setup time  .  

Cullet ratio change is limited. Theoretically, cullet ratio can be used from 0% to 100% in 

glass making.  Cullet ratio is limited due to technology used in the factory. Therefore, cullet ratio 

can range between two values       and    . Glass cullet is generated from different resources 

which are cut losses      
 , defective products      

  and planned crushing      
 

. Defective 

products crushed quantity is random, and differs from one product one product to another.   

The objective is to minimize total cost by controlling production policy parameters, glass 

pull rate and glass cullet ratio. The model takes into consideration the inventory cost     raw 

material cost     cost of energy    consumed, crushing cost    and added value lost cost      

3.2 Methodology   

 Through several visits to Al-Araby factory, deep knowledge about glass tube 

manufacturing systems was obtained. With the assistance of many batch and production 

engineers, practical limits for production parameters such as glass pull rate (GPR) and cullet 

ratio were obtained. Also, knowledge was transferred about different raw material used and how 

to form raw material mix (batch) to meet certain oxides level to assure the quality for glass tube 

products. Then, mathematical model was developed, and it was nonlinear mixed integer model 

with stochastic parameters such as product demand. Therefore, simulation model was developed 

then to model proposed production policy and glass tube manufacturing system. Besides, 

simulation model is easier tool to represent dynamic and stochastic systems. This step is 

followed by verification and validation step to assure the accuracy of the developed model.  

After that, optimization is applied to minimize total cost by changing policy and production 

parameters. At the end, sensitivity analysis is performed to test the effect of parameters which 

has higher effect on total cost.  
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Chapter Four 

Simulation Model  

4.1 Production Proposed Policy  

The policy controls glass tube manufacturing using two variables which are glass pull 

rate        and percentage of glass used in batch       on daily basis. The policy prioritizes 

which product to be produced in the factory. The highest priority is given to crushing glass 

output in case of having shortage of cullet glass which is used for production. After which, the 

priority is given to producing MTS products because demand for MTS products is on a daily 

basis. Finally, if the factory satisfied conditions for higher priority items, MTO can be produced.  

The policy proposes that there are a lower and upper levels for glass cullet inventory (z, 

Z). if the current inventory of glass cullet reaches the lower level z, the produced glass is crushed 

to make cullet inventory  reaches the upper level Z. the time allocated for this operation can be 

also allocated for the weekly and monthly maintenance time. The policy also considers that there 

are lower and upper levels for MTS inventory (s, S). if the current inventory of glass cullet 

reaches the upper level Z and MTS inventory reaches s, the factory will produce MTS product 

till its inventory reaches S. after which the MTO product can be produced. the policy can be 

summarized as follows in the flow chart shown in Fig. 4.1. 
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. 
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Figure 4.1: Proposed Production Policy 
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4.2 Simulation Model Assumptions  

There are several assumptions are made: 

1- Glass pull rate (GPR) and cullet ratio changes once a day. 

2- Prices are fixed to products and are not sensitive to the demand. 

3- Setup time, to change from one product to another, is negligible.  

4- Raw material inventory is not considered in the model because it is assumed that no 

change in primary materials used in glass making. 

5- Delivery of MTO order is done only once during planning horizon. 

6- No change in capacity according to customers’ demand.  

7- Equipment reliability is not considered in the model.  

4.3 Simulation Model for proposed production policy 

 Simulation model is used to test the effectiveness of a certain policy to cost reduction. 

Hybrid production environment for MTS and MTO products imposes difficulty for production 

planning. Developed simulation model is composed of three modules: decision, production and 

order fulfillment. The model is divided to three modules to add flexibility for changes in any of 

them. Decision module considers the application of the proposed policy adopted by the 

management. The production module depicts the processes in the production in simplified way. 

The third module is responsible for handling customer orders. 

 Simulation model is used to represent the dynamic behavior of hybrid MTS/MTO 

manufacturing systems as simulation can depict more details than analytical methods. That 

increases the accuracy of results from simulation model. It is an easy tool to represent stochastic 

nature for product demand, customer orders acceptance and fulfillment. Simulation has the 

ability to capture the system behavior over time horizon such as inventory and warehouse. 

Besides, it is impossible to conduct experiments to change production parameters in glass 

manufacturing systems because glass manufacturing is continuous process.   

4.3.1 Software  

Simulation model is done using Rockwell simulation software ARENA to simulate the 

production policy and its effect on the cost. ARENA is Visio-compatible flowcharting tool where 
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entities are generated and follows the flow chart to execute predefined actions. ARENA contains 

different modules (blocks) and each one is used for certain task. The used modules in simulation 

are create, assign, decision, delay, read-write and dispose modules. 

4.3.2 Input data 

Different parameters are input for simulation model. These parameters are demand for 

MTS and MTO demand, quality, and raw material consumption and production parameters. 

Several interviews with production managers were conducted to collect useful data about glass 

production. Besides, Historical data were analyzed by input analyzer tool in ARENA.  

4.3.2.1 MTS and MTO products demand 

The demand for MTS products is not deterministic during the whole month. It was found 

that the demand for MTS product is stochastic and follows beta distribution as the following 

expression: 

                =                                 

 

Figure 4.2: MTS demand Variability 

Whereas, the monthly demand of MTO product is based on customer demand which is 

deterministic as MTO demand arrives once per month  

                  =             

Table 4.1: MTS & MTO Demand 

Product  Distribution  Expression  Square error 

MTS Beta                                0.051303 

MTO deterministic 19806.7 --- 
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4.3.2.2  MTS and MTO Product Quality  

The quality rates for MTS and MTO product were analyzed. MTS quality rate was found 

to follow beta distribution through the following expression 

           =                                

 

Figure 4.3: MTS Quality Variability 

MTO quality follows beta distribution through the following expression 

           =                                 

 

Figure 4.4: MTO Quality Variability 

 

Table 4.2: MTS & MTO Quality 

 Distribution  Expression  Square error 

MTS quality  Beta 0.78 + 0.22 * BETA(8.08, 0.642) 0.004618 

MTO quality Beta  0.86 + 0.14 * BETA(1.78, 0.468) 0.031830 

 

4.3.2.3 Batch Raw Material Composition  

Historical data was analyzed to get distribution of raw material percentage of total batch 

weight without cullet because cullet ratio is a decision variable. 
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                         =  
                    

                          
 

Table 4.3 summarizes the distribution of raw material percentage: 

Table 4.3: Raw Material Percentage in Batch 

raw material distribution expression square error 

borax lognormal LOGN(0.00788, 7.03e-005) 0.003029 

carbon Erlang        ERLA(6.3e-006, 25) 0 

dolomite normal  NORM(0.132, 0.00181) 0.01391 

feldspar Triangular  TRIA(0.08, 0.0845, 0.11) 0.138111 

limestone Weibull 0.01 + WEIB(0.0129, 9.74) 0.008623 

silica sand Weibull       0.49 + WEIB(0.0346, 6.71) 0.116359 

soda ash Lognormal     0.21 + LOGN(0.0112, 0.00113) 0.04285 

sulphate Normal        NORM(0.00249, 1.96e-005) 0.045077 

 

4.3.2.4 Production Parameters 

 Interview with glass manufacturing experts showed that glass pull rate (GPR) may vary 

between 550 and 800 kg/hr for 90 ton furnace. Also, it was found that cullet ratio used in the 

batch ranges from 25 % to 40%.  GRP change is limited to 5 Kg per hour.  

4.3.3 Simulation Model  

The model considers different types of glass tubes   that can be produced by Al-Araby 

factory. Each product has certain dimensions: density   , outer diameter   , thickness    and 

length   . Dimensions have specific upper and lower limits according to the type of the product 

as follows:  

     ≤   ≤                                  

     ≤   ≤                                   

     ≤   ≤                                  

The total mass of glass tube    can be defined as follows  

   *      (          
 )    + =                               
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Masses of tubes are input to the model according to specifications deployed in factory.  

4.3.3.1 Decision Module 

This module is responsible for making decision of what to produce. Time of making 

decisions is random with exponential time of mean one hour. The policy parameters are glass 

cullet inventory limits (z, Z), MTS inventory limits (s, S), glass pull rate        and percentage 

of glass used in batch      . Whether the module chooses MTS, MTO or cullet to produce, the 

module set a value for glass pull rate and amount of cullet to use in glass making.  

Glass Pull Rate (GPR) 

The factory control the production rate by controlling the glass pull rate from the 

furnace       . Glass pull rate is limited to the capacity of the furnace and it has lower and upper 

limit. 

    ≤       ≤                                    

Glass pull rate can be changed to meet current demand. Change is limited by a certain 

amount      which has a value while increasing glass pull rate      , and has a different 

value while decreasing      . During changing the glass pull rate, glass is crushed for 0.5 hr.  

        =                                         

Production selection of MTS, MTO and Cullet 

The factory makes the decision to produce MTS or MTO products to reach the objective 

of decreasing the cost. At any time, the factory will decide to produce quantity of MTS product 

    
  or to produce MTO product     

 . There are losses in form of crushed glass defined as      . 

      = (    
      

 )  (    
      

 )                                    

Where,  

    
 = {
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 = {

      
   

           
 

These binary variables are defined as follows  

    
 ≤       

                              

    
        

                               

    
 ≤       

                               

    
        

                              

Binary variables are defined for selection whether to produce MTS or MTO and the 

summation of the two variables must equal to one as it is not allowed to produce two different 

products at the same time. 

∑(    
      

 )

 

=                                

The quantity delivered to the customer is the summation of all produced quantities     
  

and     
 during the planning horizon 

  
 = ∑    

 

 

                               ⁄  

  
 = ∑    

 

 

  ⁄                               

The factory produces crushed glass       which is used regularly in the batch 

formulation. Crushed glass is produced due to cut losses from production      
 , defective 

products      
 , and crushing due to planning      

 
. 

     =      
       

      
          

 The module decides (Fig. 4.5) to produce MTS whenever cullet inventory is higher lower 

limit (z) or MTO order is fulfilled. MTO product is produced whenever cullet inventory is higher 
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than low limit (z) and MTS inventory is higher than high MTS inventory limit (S). Cullet is 

produced whenever cullet inventory is less than low cullet limit (z) till the inventory reaches high 

limit (Z). The model decides to produce MTS product whenever all previously mentioned 

conditions are satisfied.  

 

Figure 4.5: Decision Module 

4.3.3.2 Production Module  

Glass production is continuous during the whole year. Due to the fact that the molten 

glass level is maintained at constant level, glass pull from the furnace will not impact the level as 

it is compensated directly by feeding raw material. Therefore, the change of molten glass level 

inside the furnace can be neglected. As a result, continuous production can be discretized. 

A decision about what the product the factory will produced is based on the output of 

decision model as shown in Fig. 4.6. Cut losses and defects rate are taken into consideration and 

the amount of cullet produced are added to cullet inventory. MTS and MTO Inventory levels will 

be updated according to decision made. Production costs are calculated in this module which 

includes raw material cost, energy costs and inventory costs.  
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Figure 4.6: Production Module 

Raw Material Consumption  

For producing glass, raw material flows continuously into the furnace with batch rate     . 

Batch weight is the summation of all raw material rates     
   and the glass cullet rate used in 

glass making     
  . 

    = ∑(    
  )

  

     
                               

Batch rate      is proportional the glass pull rate       . Batch rate is larger in quantity to 

compensate for losses during melting process inside the furnace. Compensation factory is 

denoted by   . 

    =                                            

Amount of crushed glass used in batch      
   is proportional to the total batch weight by 

factor      . 

    
  =                                              

The amount of raw material rate     
   consumed to produce glass is defined as 

proportional of batch weight.  

    
  =                 
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Energy Consumption  

Specific energy consumption decreases with the increase of glass pull rate and cullet ratio 

as shown in Fig. 2. Data was derived from the graph and tabulated in the table 4.4.  

Table 4.4: Empirical Data for Energy Consumption versus GPR and Cullet Ratio 

cullet ratio GPR Specific Consumption (kg/kg-glass) Fuel consumption (m
3
) 

1 120 172 10939.2 

1 140 160 11872 

1 170 148 13334.8 

1 200 133 14098 

1 220 123 14341.8 

0.8 120 178 11320.8 

0.8 140 169 12539.8 

0.8 170 160 14416 

0.8 200 135 14310 

0.8 220 144 16790.4 

0.5 120 188 11956.8 

0.5 140 185 13727 

0.5 170 175 15767.5 

0.5 200 170 18020 

0.5 220 164 19122.4 

0.2 120 196 12465.6 

0.2 140 194 14394.8 

0.2 170 190 17119 

0.2 200 185 19610 

0.2 220 182 21221.2 

0 120 204 12974.4 

0 140 202 14988.4 

0 170 198 17839.8 

0 200 196 20776 

0 220 194 22620.4 

 

Quantity of gas consumed      defined by linear regression to correlate the consumption 

of fuel with glass pull rate and glass cullet ratio. 

    =          (             )  (               (
   

   
))                             
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Analysis of variance (ANOVA) shows that both variables (glass pull rate and cullet ratio) are 

significant as shown in table 4.5.  

Table 4.5: ANOVA for Energy Consumption 

  df SS MS F Significance F 

Regression 2 2.42E+08 1.21E+08 149.8974 1.53E-13 

Residual 22 17780218 808191.7 

  Total 24 2.6E+08 

    

Regression equation for energy consumption is as shown in table 4.6. 

Table 4.6: Energy Consumption Regression Equation 

  Coefficients Standard Error t Stat P-value 

Intercept 6155.626 882.4492 6.975615 5.31E-07 

MG -4813.02 487.5484 -9.87189 1.53E-09 

GPR 69.35206 4.875484 14.22465 1.42E-12 

 

Normal probability plot shows that data is normal, so regression is valid as shown in Fig.4.7. 

 

Figure 4.7: Normal Probability Plot 
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Finished Product Inventory 

Inventory of MTS products     
  increases when there is increase in the quantity produced 

for MTS      
  , and it decreased when order is met by   

 .  

    
        

      
    

 =                                

For MTO product, inventory     
  increases when there is increase in the quantity produced 

for MTO      
  , and it decreased when order is met by   

 . Safety stock for MTO products are not 

kept in the warehouse. 

    
        

      
    

 =                             

Inventory of finished products has limitation which is the capacity of warehouse  , 

where the summation of MTS and MTO inventory at any time   should be less than or equal to 

warehouse capcity. 

  ∑     
      

  

 

                              

Raw Material and Crushed Glass Inventory  

Inventory level of raw material     
   depends on the rate of consumption of raw material 

    
   and raw material order delivery to the factory      .  

    
  =       

             
            

Crushed glass inventory     
   depends on the amount of crushed glass produced in the factory 

      and amount of crushed glass consumed in batch formulation     
  . 

    
  =       

             
             

Costs  

Total direct cost for production and storage is denoted by   . It is the summation of raw 

material cost  , energy cost   , inventory cost    and penalty cost   . 
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  =                 

Raw material cost    is the summation of all costs of all raw material used in batch 

formulation by multiplying the unit cost of raw material     by consumed quantity at any 

time     
  . 

  = ∑∑(        
  )              

  

 

Energy cost    is computed as follows  

  = ∑∑                   

  

       

Inventory costs is the multiplication of holding cost per unit    and inventory level of 

product (i) at time (t) denoted as      
  and     

 .  

  = ∑∑        
      

 

 

              

 

 

Crushed Cost    is the cost resulted from crushing activity of the glass tubes. Crushing 

cost is the multiplication of crushing cost per unit     and the quantity to be crushed      .  

  = ∑∑     

 

                    

 

 

As a result of crushing of glass, added value to get glass is lost. Added value is the 

summation of raw material and energy consumed to produce unit glass multiplied to the quantity 

to be crushed. Added value cost     can be defined as follows 

   =
∑ ∑               ∑ ∑ (        

  )   

∑ ∑             
   

                

4.3.3.3 Order Fulfillment Module 

The factory receives MTS and MTO orders before the start of the new month. The 

simulation model deals with accepted orders; it doesn’t include acceptance/rejection order 

problem. The input variables for the model are order demand and order due date.  The model 
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deals with order quantities as masses not number of tubes. The model considers MTS as a daily 

demand where MTO is a monthly demand. The model doesn’t fulfill the order until the inventory 

of the product is higher than or equal to order quantity. If the order is released, revenues are 

calculated. After the MTO order is fulfilled, the remaining products kept in stock are crushed and 

added to cullet inventory. Also, amount of MTS product crushed is the difference between the 

MTS inventory and MTS low limit (s) as shown in Fig. 4.8.  

 

Figure 4.8: Order Fulfillment Module 

Total revenue the factory is making during the time horizon of this study is denoted by  . 

Total revenue   is the summation of all orders’ revenue either it is MTS or MTO product. Each 

order is assumed to include one product only.  

 = ∑   
    

  

 

  

, where the revenue of an order is the product sum of all product prices     the quantity produced 

and delivered to customer.  

  
 =      

                               

  
 =      
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For MTS order, delivered quantities should be less than or equal to the demand   
 .  

  
 ≤   

                               

In the case of MTO order, delivered quantity should be less than or equal to required demand 

  
 as shown in Fig. 8.4. 

  
 ≤   
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Chapter Five 

Verification and Validation 

5.1 Verification  

The developed simulation model was initially verified using visual test through running 

with animation on Arena Simulation to keep track of generated entities and how the model 

corresponded to different entities. Besides, Arena doesn’t create report unless there is no error in 

debugging and terminating entities. A report was generated for running the model for one 

replicate only as shown (appendix C). 

Another way to verify the model is by estimating the arrival rate for an entity. Arrival 

rate theoretically is 1 per hour. The output value is 1.02 per hour. This calculated value is very 

close to initial value for arrival rate. In conclusion, verification tests prove that the model works 

correctly.  

5.2 Number of Replications and Warm-up Period  

 In order to guarantee high accuracy of simulated results, there is a need to assure that 

results are collect at steady state condition of the system. Therefore, it is required to calculate 

warm-up period. Besides, there must be enough number of replicates to assure narrow 

confidence interval which ensures high precision for results. 

5.2.1 Number of Replications   

To guarantee high precision of simulation output, certain number of replications has to be 

specified. Most practitioners either use two little or too many number of replications. Little 

number of replications makes the output to be inaccurate where too many replications require 

high level of computation.  

There are many approaches to determine the number of replications to guarantee high 

precision [28]. The first approach is to determine precision by defining the probability    . The 

second approach is graphical method where cumulative mean is plotted against the number of 

replications. The user can select the number of replications when the plot becomes steady. The 

third approach is to use confidence interval method. It depends on constructing confidence 

interval with changing number of replications as well as variable output. This thesis used the 

third method to define the number of replications because this approach defines variability as 
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well. Different variable outputs were used which are MTS inventory and MTO inventory (see 

appendix A). It was found that required replication number is 15 replications as shown in Fig. 

4.9&4.10.  

 

Figure 5.1: Replication Number Using MTS Inventory 
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Figure 5.2: Replication Number using MTO Inventory 
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The model was tested for 3000 days to determine warm-up period. The model was run for 
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Figure 5.3: Warm-up Period (3000 days) 

It was found that warm-up period can be estimated to be 21 days as shown in Fig. 4.12.  

 

Figure 5.4: Warm-up Period (100 days) 
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5.3 Validation  

The model was validated through different cases. The first case was formulated to force 

the whole glass production is crushed during the simulation run. In the second case, parameters 

were adjusted to produce only MTS products.  The third case was simulated versus actual data 

provided by Al-Araby Glass factory. 

5.3.1 The First Case 

The  first case assumes that the current inventory of crushed glass is equal to zero, where 

the policy control limit for crushing glass (z, Z) are 2668 and 4871 respectively. According to 

previous condition the production is forced to crush all glass output to reach the upper level of 

crushed glass inventory (Z). To make sure that only crushing will occur during simulation model, 

GPR was assumed to be very low number (1 kg/hr) if the model chooses to crush glass. All the 

assumptions used to test first case are summarized in table 5.1. 

Table 5.1: Parameters Settings for The First Case 

z (kg) 2668     
   0 

Z (kg) 4871     
  1000 

s (kg) 18272     
  0 

S (kg) 27838 GPR 1 

      0.36   

 

The model was run for 30 days. The results showed that the model decided under these 

conditions to crush glass output and not to produce products either MTS or MTO. As shown in 

below graph, initial inventory was 1000, and then this quantity was released when an order 

arrives. After that, MTS product was not produced as there is no enough cullet stock to produce 

glass as shown in Fig. 5.5. 
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Figure 5.5: First Case MTS Inventory 

On the other hand, the whole production was crushed to increase the level of cullet 

inventory as shown in Fig. 5.6. As glass pull rate was assumed to be very low, the cullet 
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Figure 5.6: First Case Cullet Inventory 
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5.3.2 The Second Case 

The second case is to test whether the model will choose to produce MTS product or not. 

In this case, some assumptions are made to make it logical to produce MTS according to the 

developed policy. One assumption is to guarantee that inventory level of crushed glass is higher 

than the lower level (z). Also, the inventory level of MTS and MTO are low, so the model will 

choose to produce either one of them. All the assumptions used to test second case are 

summarized in table 5.2. 

Table 5.2: Parameters Settings for The Second Case 

z (kg) 2668      
   100000 

Z (kg) 4871      
  0 

s (kg) 18272      
  20000 

S (kg) 27838 GPR 758 

      0.36   

 

Initial level for cullet inventory was set to high number (40000) therefore the cullet 

inventory can cover the whole month cullet consumption. Consequently, the model has to 

produce either MTS or MTO. To force the model to produce MTS, the initial level for MTS 

inventory was set to Zero. Besides, MTO inventory was set to be higher than MTO order 

quantity that there is no need to produce MTO.  

Results show that it is effective as it produced only MTS product. Fig. 5.7 shows that 

MTS inventory is increasing over the simulation run length where MTO inventory is kept at its 

initial level till an order arrives and goes to zero. Every day MTS order arrives and MTS 

inventory is updated.  
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Figure 5.7: Second Case MTS & MTO Inventory 

Cullet is not produced as it is produced during production from crushing excess MTS as 

shown in Fig.5.8. Once cullet inventory reaches lower control limit (z), cullet is produced till it 

reaches upper limit (Z). 

 

Figure 5.8: Second Case Cullet Inventory 
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5.3.3 The Third Case  

In this section the model was validated using the same production policy used in the 

factory. The production policy entails producing MTS whenever MTS inventory levels reaches 

below the safety stock level. MTO product is produced when MTS inventory level is higher than 

the safety stock. MTS safety stock is maintained to hold MTS products in stock to compensate 

for failure and regular maintenance. The simulation model was run and the results are as shown 

in table 5.3: 

Table 5.3: Third Case Results 

 Simulation 

Mean 

Half width  upper confidence 

interval 

lower confidence 

interval 

real data 

MTS produced 

(kg) 

370800.29 22979.84 393780.13 347820.45 388364.

4 

MTO produced 

(kg) 

20665.09 7689.38 28354.47 12975.71 19494.9

2 

 

 It is concluded from the three cases that the model was verified successfully and works 

efficiently. It was found that real quantities for MTS and MTO produced fall within the range of 

confidence interval. 
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Chapter Six 

Simulation-based Optimization 

Near-optimum values for policy parameters can be obtained by applying simulation-

based optimization using OptQuest tool in Arena software. The main objective of the simulation 

is to minimize the total cost the factory making during the simulation run length. Decision 

variables are glass pull rate, cullet ratio, MTS product limit (s, S), cullet limits (z, Z). Simulation 

run length is one month as MTO orders arrive once a month and production planning for glass 

manufacturing is prepared for one month.  

OptQuest software, developed by F. Glover, J.P. Kelly and M. Laguna, has several 

optimization engines; however, the main optimization engine is scatter search methodology 

coupled with tabu search strategies. Scatter search methodology can handle continuous or 

discrete variable with one or multiple objective functions. Using OptQuest requires defined a set 

of controls, responses and constraints and objective function (s). Controls are the decision 

variables. They are policy parameters which are upper and lower cullet limits (z, Z), and upper 

and lower limits for MTS product limits (s, S). Also, production parameters, glass pull rate and 

cullet ratio, are controls. Where response defined is total cost, MTS inventory level, MTS 

produced quantity and MTO produced quantity. The objective defined is to minimize total cost. 

There are several constraints added to optimization model to guarantee logical outputs from the 

model. These constraints are as follows: 

1- Production Capacity: the maximum capacity of the factory during the month is 483840 

kg assuming there are no defects in products, and cut losses are assumed to be 10% of 

total production. The month is assumed to be 30 days. 

                           =                  =        

2- Production capacity may vary between two values which are 550 and 800 kg/hr. Amount 

of cullet ratio of the batch may vary between 25% and 40%. These values are practical 

values to guarantee the quality of the product. Beyond these values, there is no proven 

evidence on the quality of the products. 

3- Due to the continuous production of glass tubes, it is better to define a range for produced 

quantities for MTS and MTO products because it is difficult to define an exact estimate 

to products quantities and the operations cannot be stopped. 
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           ≤             ≤              

           ≤             ≤               

    

Through this way, the computation time required to reach optimum solution will be less.  

4- The fourth constraint is related to policy parameters. It is used to force the optimization to 

choose S with higher value than s and the same scenario applies for cullet limit (Z,z). 

    

    

There are several factors while choosing OptQuest to solve optimization problem. The 

first factor is the number of simulations. Number of simulations depends on number of controls. 

If the number of controls exceeds 100 controls, results might deteriorate. As we have only six 

controls, there is no problem regarding the accuracy of results. It was decided to have 1500 

simulation runs to have better results despite the fact that number of simulations required is 100 

simulations [29].  

6.1  Optimization Case Study 

Simulation-based optimization is applied to a real life case study at al-Araby glass factory to 

compare the effectiveness of the new approach proposed. The demand for MTS and MTO 

product for February is as shown in table 6.1: 

Table 6.1: Optimization Case Study MTS and MTO Data 

 MTS product MTO product 

average mass (kg) 0.164 0.085 

total MTS produced (kg) 372372.2 19494.92 

conformity % 98.8 92.6 

 

 Where glass pull rate was 780 kg/hr and cullet ratio was 27.5%.  

Accordingly, constraints will be as follows: 

Constraint (1)                                    <         

Constraint (2)                ≤             ≤        
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Constraint (3)               ≤             ≤       

Constraint (4)              

Constraint (5)             

Constraint (6)                            ≤   

6.2 Optimization Results  

The optimum value for glass pull rate was 800 kg/hr to be used for all 28 days with no change 

from day to another. Production policy parameters were optimized as shown in table 6.2: 

Table 6.2: Optimized Production Parameters 

s 15000 z 6000 

S 35000 Z 15000 

 

On the other side, cullet ratio changes from day to another as shown in table 6.3.   

Table 6.3: Optimized Cullet Ratio 

Day cullet ratio (MG) Day cullet ratio (MG) 

1 0.289 15 0.398 

2 0.400 16 0.260 

3 0.400 17 0.400 

4 0.274 18 0.290 

5 0.398 19 0.400 

6 0.400 20 0.287 

7 0.250 21 0.254 

8 0.287 22 0.400 

9 0.400 23 0.260 

10 0.302 24 0.400 

11 0.400 25 0.389 

12 0.399 26 0.379 

13 0.400 27 0.270 

14 0.280 28 0.400 
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The average cullet ratio for the whole month is 34.5%. Therefore, Cost was minimized to be 

863058 EGP. Optimization results were applied to the previous case to validate the results with 

15 replications to test the effect of optimized values on the profit the factory is making.  

6.2.1 MTS and Cullet Inventory 

For MTS inventory, it was found that the mean MTS inventory is 25553.12 kg with standard 

deviation equals to 4087 kg. The average hourly MTS inventory lies between lower and upper 

MTS production level as shown in Fig. 6.1.  

 

Figure 6.1: Average MTS Inventory 

For the case of cullet inventory, it was found that average hourly cullet inventory fall between 
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Figure 6.2: Average Cullet Inventory 

6.2.2 MTS and MTO Production Quantity  

For MTS and MTO production, the average MTS quantity produced for the whole month 

is 371770.8 kg with standard deviation of 10205.6 kg. While the average MTO quantity 

produced is 18455.6 kg with standard deviation 4696.9 kg as shown in table 6.4. 

Table 6.4: MTS and MTO Produced Quantities 

run Total MTS produced Total MTO 

produced 

run Total MTS 

produced 

Total MTO 

produced 

1 369799.9194 22243.35665 8 359895.1673 9754.663285 

2 377408.2324 22215.81574 9 378838.8491 7043.682575 

3 383336.3893 20167.26458 10 364490.3558 21638.18507 

4 381864.7551 21724.20064 11 362231.4684 20244.92079 

5 364638.2534 20276.15567 12 387582.197 20786.84354 

6 381071.7713 20280.11255 13 362633.9047 20290.50009 

7 354430.846 19394.79182 14 380035.7143 10423.71812 

   15 368304.645 20349.47125 

 

It was found that the total MTS produced quantity was 371770.8 kg where simulation 

results show that the total MTS produced quantity can vary between 402387.7 Kg, and 341153.9 
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kg.  Therefore, actual quantity produced falls in confident interval. Confidence interval was 

constructed as follows 

                   =                              

For MTO production, simulation results show that total MTO produced quantity falls 

between 33365.2 kg and 3546 kg. Therefore, actual MTO produced quantity falls in constructed 

confidence interval.  

6.2.3 Raw Material Consumption  

Considering raw material, it was found that raw material increased due to the increase in 

glass pull rate from 780 kg/hr to 800 kg/hr. However, total raw material without considering 

glass cullet decreased as culet ratio increased from 27.5% to 34.5%.  Actual raw material 

consumption without considering glass cullet is 458596.5 kg, where the optimized raw material 

consumption is 457141.84 kg. The cost for raw material is increased by 857.1 EGP, and this is 

attributed to increase in feldspar consumption as shown in Table 6.5.  

Table 6.5: Optimized Raw Material Consumption 

 Actual 

consumption (Kg) 

optimized 

consumption (kg) 

cost per 

kg 

Cost difference 

(EGP) 

borax 3602.60 3602.83 5.05 1.2 

dolomite 61245.40 60356.43 0.15 -133.35 

feldspar  39204.8 41849.4 0.675 1785.1 

carbon  72.25 71.84 22 -9 

silica sand  241818.8 238813.77 0.15 -450.8 

soda ash  101279.8 101139.48 2.25 -315.7 

limestone  10236.32 10169.46 0.345 -23.1 

sulphate  1136.5 1138.65 1.3 2.8 

total 458596.47 457141.84  857.1 

6.2.4 Crushing and Added Value Cost  

This increase in cullet ratio increases the crushing cost of glass to make cullet as shown 

in table 6.6. The average crushing cost is 96085.5 EGP as shown in Table 6.6.  As the cost of 

crushing equals to 2 EGP/kg, the total crushed quantity is 48042.8 kg that results in consuming 

60.05 hr monthly to produce cullet. Therefore, the required crushing time is 2.1 hr per day. The 
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actual crushing time was 2.1 hr/day. The actual total crushed quantity is 85436 kg, and that 

makes the actual crushed cost is 170872 EGP.  

Table 6.6: Crushing Quantity and Cost 

run crushing cost (EGP) Crushed quantity (kg) 

1 93916.2 46958.1 

2 85942.5 42971.3 

3 81160.5 40580.3 

4 81287.34 40643.7 

5 101269.4 50634.7 

6 82873.4 41436.7 

7 113600 56800 

8 120000 60000 

9 100800 50400 

10 101188 50594 

11 105238 52619.1 

12 76180 38090.1 

13 104483.8 52241.9 

14 96000 48000 

15 97342.8 48671.4 

total  96085.5 48042.8 

 

Due to crushing, added value presented in raw material and energy is lost. Added value cost due 

to raw material and energy is summarized in table 6.7. The total lost added value is 140906.6 

EGP. 

Table 6.7: Added Value Cost Summary 

run Added value cost (EGP) run Added value cost (EGP) 

1 137784.2 9 148275.6 

2 125995.1 10 147407.7 

3 119101.3 11 154220.5 

4 118849.3 12 110946 

5 148625.8 13 153245.2 

6 121631.3 14 141089.8 

7 167070 15 142787.7 

8 176570   
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6.2.5 Inventory Cost 

Inventory holding costs for cullet is assumed to be the same of MTS product. Table 6.8 shows 

that MTS inventory cost has higher impact on inventory cost. The total inventory cost equals 

70741.9 EGP on average. 

Table 6.8: Inventory Costs 

run MTS inventory 

costs (EGP) 

MTO inventory 

costs (EGP) 

cullet inventory 

costs (EGP) 

TOTAL 

INVENTORY COST 

(EGP) 

1 40876.6 105.1 20357.3 61339.0 

2 44951.0 101.8 20410.1 65462.9 

3 54140.3 109.1 19333.0 73582.5 

4 45454.8 95.1 19715.4 65265.4 

5 79035.1 102.2 21548.2 100685.5 

6 41309.4 98.1 20726.6 62134.1 

7 37923.3 105.1 19764.0 57792.4 

8 34836.9 52.8 19940.9 54830.6 

9 31023.0 34.5 20340.9 51398.4 

10 105730.2 110.0 20416.4 126256.6 

11 69731.7 105.9 19497.5 89335.1 

12 47780.5 108.7 19524.9 67414.1 

13 40493.6 106.1 20304.4 60904.1 

14 35448.0 56.4 20214.5 55719.0 

15 49264.2 110.1 19634.2 69008.5 

 

  

average 70741.9 

 

6.2.6 Energy Consumption  

Energy consumption was decreased due to the fact that increasing cullet ratio of batch decreases 

the value of energy consumption as shown in table 6.9. It was found that energy consumption has 

decrease over the month period by 59793.65 m3. That leads to decrease in energy cost by 84309 

EGP. Total energy cost reached 229872.8 EGP.  
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Table 19: Optimized Energy Consumption 

DAY  Optimized  Energy 

Consumption (m
3
) 

Actual 

Values (m
3
) 

Consumption 

Savings (m
3
) 

Energy Cost 

Savings (EGP) 

Total Cost 

(EGP) 

1 5818.5 6588.0 769.5 1085.0 8204.0 

2 5563.7 7929.0 2365.3 3335.1 7844.8 

3 6631.9 8211.0 1579.1 2226.5 9351.0 

4 5571.5 8470.0 2898.5 4086.9 7855.8 

5 5570.0 7601.0 2031.0 2863.7 7853.7 

6 6282.9 7523.0 1240.1 1748.5 8858.9 

7 6102.8 7091.0 988.2 1393.3 8605.0 

8 5565.9 7025.0 1459.1 2057.3 7847.9 

9 6029.7 6886.0 856.3 1207.4 8501.9 

10 5562.0 7140.0 1578.0 2225.0 7842.4 

11 5566.8 7954.0 2387.2 3366.0 7849.1 

12 5562.0 8263.0 2701.0 3808.4 7842.4 

13 5575.3 8262.0 2686.7 3788.3 7861.2 

14 6232.1 8246.0 2013.9 2839.7 8787.2 

15 5564.9 7665.0 2100.1 2961.1 7846.5 

16 6082.6 7707.0 1624.4 2290.4 8576.4 

17 5566.4 8395.0 2828.6 3988.3 7848.6 

18 6084.1 8362.0 2277.9 3211.9 8578.5 

19 5565.0 8427.0 2862.0 4035.4 7846.6 

20 6107.2 8489.0 2381.8 3358.4 8611.1 

21 6262.7 8440.0 2177.3 3070.0 8830.4 

22 5575.1 8226.0 2650.9 3737.8 7860.9 

23 6228.3 8258.0 2029.7 2861.9 8781.9 

24 5562.1 8400.0 2837.9 4001.4 7842.6 

25 5615.3 8350.0 2734.7 3855.9 7917.6 

26 5668.9 8408.0 2739.1 3862.2 7993.1 

27 6182.5 8336.0 2153.5 3036.5 8717.3 

28 5330.2 8172.0 2841.8 4006.9 7515.6 
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6.2.7 Optimization Summary  

Optimization results are shown in the following table 6.10.  

Table 6.10: Optimization Results 

S (kg) 15000 

S (kg) 35000 

z (kg) 6000 

Z(kg) 15000 

Average cullet ratio 34.5% 

GPR (kg/hr) 800 

Raw material cost (EGP) 325451.2 

Energy costs (EGP) 229872.8 

Inventory cost(EGP) 70741.9 

Crushing cost (EGP) 96085.5 

Lost added value (EGP) 140906.6 

Total cost(EGP) 863058 
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Chapter Seven 

Sensitivity Analysis 

Pareto analysis was performed and it was found that more than 80 % of the cost depends on raw 

material, energy and added value cost as shown in table 7.1. Added value cost is the value of 

energy and raw material lost in crushing glass to make cullet. Therefore, raw material and energy 

are the most dominant factors for total costs. 

Table 7.1: Pareto Analysis for Cost 

 cost (EGP) Percentage (%) Cumulative Percentage (%) 

Raw material cost 325451.1581 38% 38% 

Energy costs 229872.7958 27% 64% 

Added value cost 140906.6341 16% 81% 

Inventory cost 96085.49274 11% 92% 

Crushing cost 70741.87643 8% 100% 

 

7.1 Raw Material Costs 

Pareto analysis is performed on raw material. It was found that soda ash and sand silica are 

dominant raw materials in changing raw material costs as shown in table 7.2.  

Table 7.2: Raw Material Cost Pareto Analysis 

 total cost (EGP) percentage cumulative percentage 

soda ash 225755.4284 70% 70% 

silica sand 35536.85434 11% 81% 

feldspar 28022.13906 8% 90% 

borax 18049.39416 6% 95% 

dolomite 8981.254098 3% 98% 

limestone 3480.607404 1% 99% 

carbon 1568.756213 0% 100% 

sulphate 1468.45997 0% 100% 
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Table 7.3 shows raw material cost change from year 2013 to 2017 [30].  

Table 7.3: Raw Material Costs 

 

Raw Material 

cost / ton (EGP)  

2013 2014 2015 2016 2017 

Silica Sand 130 150 165 150 170 

Soda Ash 1728 2250 2300 2250 6000 

Dolomite 172 240 150 150 560 

K-feldspar 522 675 675 675 675 

Borax 3991 5050 5200 5050 6950 

Limestone 240 345 345 345 458.6 

Sodium Sulphate 1095 1300 1300 1300 8500 

Carbon 22000 22000 22000 30000 22000 

 

7.1.1 Raw Material Cost Forecast 

Raw material costs increased significantly in year 2017 due to economic regulations made by the 

government. From year 2013 till year 2017, Raw material prices show increasing trend. For 

example, sand silica price increases from 2013 till 2015 and decreased in 2016 and then 

increased in 2017 as shown in Fig. 7.1. These data are based on actual data available at the glass 

tube factory [30].  

 

Figure 7.1: Silica Sand Prices from 2013 to 2017 

0

20

40

60

80

100

120

140

160

180

2012 2013 2014 2015 2016 2017 2018

p
ri

ce
 (

EG
P

 /
 t

o
n

) 

year  

Silica Sand price (EGP/ton) 

Silica Sand price (EGP/ton)



www.manaraa.com

 

53 
 

Also, soda ash prices increased drastically through year 2017 where trend show steady prices 

before 2016 as shown in Fig. 7.2 [30].  

 

Figure 7.2: Soda Ash Price from 2013 to 2017 

7.1.1.1 Silica Sand Price Forecast  

Silica sand prices forecast was done using different methods based on historical data as shown in 

table 7.4. 

Table 7.4: Silica Sand Price Forecast Using Different Methods 

year Silica 

Sand 

price 

(EGP/ton

) 

moving 

average 

(2) 

moving 

average (3) 

exponentia

l 

smoothing 

(0.9)  

exponential 

smoothing 

(0.8) 

exponential 

smoothing 

(0.7)  

regressio

n 

2013 130 -- -- -- -- -- 137 

2014 150 140 -- 130 130 130 145 

2015 165 157.5 148.333 132 134 136 153 

2016 150 157.5 155 135.3 140.2 144.7 161 

2017 170 160 161.667 136.77 142.16 146.29 169 

 

It was found that regression has lowest mean sum of error as shown in table 7.5. Therefore, 

regression is best method to deploy to get forecast at 2018.  
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Table 7.5: MSE of Different Forecasting Methods 

Method MSE 

moving average (2) 78.125 

moving average (3) 93.05556 

exponential smoothing (0.9) 702.3307 

exponential smoothing (0.8) 6162.126 

exponential smoothing (0.7) 457.8135 

regression 72.75 

 

Silica sand price will be 177 EGP/ton as per developed linear regression forecast for 2018. 

7.1.1.2 Soda Ash Cost Forecast 

Different forecasting methods are used to determine new prices as shown in table 25.  

Table 7.6: Soda Ash Price Forecasting Using Different Methods 

year Soda ash 

price 

(EGP/ton

) 

moving 

average 

(2) 

moving 

average (3) 

exponential 

smoothing 

(0.9)  

exponential 

smoothing 

(0.8) 

exponential 

smoothing 

(0.7)  

regressio

n 

2013 1728 -- -- -- -- -- 1196.8 

2014 2250 1989 -- 1728 1728 1728 2051.2 

2015 2300 2275 2092.667 1780.2 1832.4 1884.6 2905.6 

2016 2250 2275 2266.667 1832.18 1925.92 2009.22 3760 

2017 6000 4125 3516.667 1873.962 1990.736 2081.454 4614.4 

 

It was found that forecast error is very high as shown in table 7.7. 

Table 7.7: MSE for Different Forecasting Methods 

Method MSE 

moving average (2) 896249 

moving average (3) 1552552 

exponential smoothing (0.9)  4435360 

exponential smoothing (0.8) 7886183 

exponential smoothing (0.7)  3964505 

regression 1151565 
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Industry experts expect the increase of soda ash prices in 2018 by 20%, so soda ash price will be 

7200 EGP/ton. 

7.1.2 Raw Material Optimization results 

Optimization was run for expected cost for new raw material prices. The results show increase in 

cullet ratio that the average cullet ratio used 39.9% as shown in table 7.8.  

Table 7.8: Cullet ratio for raw material cost change 

Day cullet ratio (MG) Day cullet ratio (MG) 

1 0.400 15 0.400 

2 0.400 16 0.400 

3 0.400 17 0.400 

4 0.382 18 0.400 

5 0.400 19 0.400 

6 0.400 20 0.400 

7 0.400 21 0.400 

8 0.400 22 0.400 

9 0.400 23 0.400 

10 0.400 24 0.400 

11 0.400 25 0.400 

12 0.400 26 0.400 

13 0.400 27 0.400 

14 0.400 28 0.400 

 

Glass pull rate is set to 800 kg/hr. it was found that production policy limits weren’t changed as 

shown in table 7.9. 

Table 7.9: New production and policy Parameters for New Raw Material Prices 

 New values  

upper MTS limit (S) 35000 

lower MTS limit (s) 15000 

Upper Culler limit (Z) 15000 

lower Cullet limit (z) 6000 

Average GPR (kg/hr) 800 

Average Cullet Ratio 0.399 

Optimized Cost 1318396 
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It was found that glass pull rate didn’t change due to increase in raw material prices as 

shown in table 7.9. On the other hand, cullet ratio increased from 34.5% to 39.9%. Increasing 

cullet ratio decreases the amount of raw material required to be 430333.86 kg and decrease 

energy consumption used and it became 156309.97 m
3
. Accordingly, energy cost decreases to be 

220397.1 EGP, but raw material cost increases due to increase in prices and became 781922.629 

EGP. Added value cost didn’t change as increase in raw material cost is balanced by the decrease 

in energy cost. Crushing cost increased as there is increase in cullet ratio used in the batch which 

required increase in crushing activity. The total required crushing quantity as a result for increase 

in raw material prices is 54304.93 kg. Inventory cost decreased as the average inventory level for 

MTS product has decreased to be 22898.39 kg with standard deviation of 4261.148 kg. Also, the 

average inventory level for cullet inventory is 16234.17 kg with standard deviation of 8122.413 

kg. Besides, the average total produced quantity for MTO product is 16234.17 kg with standard 

deviation of 8112.413 kg.  

 

Figure 7.3: Comparison between Base Model and Increase in Raw Material Prices 

In conclusion, increase in raw material prices cause increase in cullet ratio, increase in 

raw material cost and crushing cost, and decrease in energy cost and inventory cost. This 

increase didn’t have impact on policy parameter, GPR or added value cost.  
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7.2 Energy Costs 

Natural gas prices increased through years due to economic regulation in Egypt. In 2014, natural 

gas price reached 1.32 EGP/m
3 
where it was 1.41 EGP/m

3
 for 2015 and 2016 [30]. In 2017, 

natural gas price increased drastically to reach 3.2 EGP/m
3
 as shown in Fig. 7.4. 

 

Figure 7.4: Natural Gas Prices from 2014 to 2017  

7.2.1 Energy Price Forecast 

Forecast was performed using different methods as shown in table 7.10. 

Table 7.10: Natural Gas Forecasting using Different Methods 

 natural gas 

(EGP/m3) 

moving 

average (2) 

moving 

average (3) 

exponential 

smoothing 

(0.9) 

exponential 

smoothing 

(0.8) 

regressio

n 

2014 1.32 -- -- -- -- 0.989 

2015 1.41 1.365 -- 1.32 1.32 1.553 

2016 1.41 1.41 1.38 1.329 1.338 2.117 

2017 3.2 2.305 2.01 1.3371 1.352 2.681 

 

It was found that mean sum of squares using linear regression is the least one as shown in table 

7.11. 
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Table 7.11: MSE of Different Forecasting Methods 

moving average (2) 0.201 

moving average (3) 0.356 

exponential smoothing (0.9) 0.871 

exponential smoothing (0.8) 0.856 

regression 0.157 

 

Using linear regression, the expected natural gas price for 2018 is 3.245 EGP/m
3
.   

7.2.2 Energy Optimization Results  

Optimum solution changed with changing natural gas prices. Optimum cullet ratio is 38% for 

expected new price. Optimum glass pull remains 800 kg/hr. production parameters are as shown 

in table 7.12. It is clear that parameters changed due to change in energy prices. 

Table 7.12: Production and Policy Parameters Summary for New Energy Prices 

 New values  

upper MTS limit (S) 35000 

lower MTS limit (s) 9024 

Upper Culler limit (Z) 15000 

lower Cullet limit (z) 4335 

Average GPR (kg/hr) 800 

Average Cullet Ratio 0.38 

Optimized Cost 1197621 

 

Raw material cost decreased due to increase in cullet ratio which means less raw material 

quantity is used for glass batch. Inventory cost decreased due to decrease in average inventory 

level for MTS product and Cullet. Average inventory level for MTS product is 23040.4 kg with 

standard deviation of 4179.244 kg, and the average inventory level for glass cullet is 9074.635 

kg with standard deviation 790.616 kg. Crushing cost increased slightly due to increase in cullet 

ratio required for making batch. The average total crushed quantity is 50347.435 kg. Besides, 

lost added value increased due to increase in energy prices. Energy cost increases due increase in 

the prices of energy therefore total cost increased as shown in Fig. 7.5. 
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Figure 7.5: Comparison Between Base Model and New Energy Prices 

In conclusion, increase in energy prices will increase cullet ratio, energy cost, crushing 

cost and added value cost. However, it will reduce raw material cost and inventory cost. In total, 

the total cost will increase. For policy parameters, upper control limits for producing MTS 

product and cullet will not change as a result to increase in energy prices where the lower control 

limits for both decreased.  
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Chapter Eight 

Conclusion and Recommendations 

This thesis developed an optimized production policy for MTS/MTO hybrid production 

system for continuous flow production of glass tube. Integrating MTS and MTO strategies will 

make full use of current capacity of glass manufacturing factory. Defining production rate and 

cullet ratio is important for better planning for glass manufacturing. 

The developed production Policy is shown to be effective in minimizing total cost by 

controlling glass pull rate, cullet ratio, MTS production limits (S, s) and cullet production limits 

(Z, z). Through simulation based optimization, variability of demand, product quality was 

considered to find near -optimum solution to minimize total cost. This research considered costs 

for raw material, energy, inventory, crushing, and added value cost for crushing.  

Discrete event simulation model was developed to represent production, order fulfillment 

and decision made in the factory using Rockwell Arena software. Continuous flow was 

discretized as the molten glass level inside the furnace is almost constant. The smaller the time 

interval is, the more accurate the discretization is. The number of replications and the warm-up 

period are checked to assure the precision of the results. The model was validated trough 

different cases. Simulation-based optimization using OptQuest tool in Arena was applied to 

optimize the parameters of the proposed policy. Proposed production policy is easy tool to aid 

decision making process as it can minimize total cost by controlling six variables which are 

production parameters and policy parameters.  

Developed simulation model has several advantages. The model is divided into three 

modules, and this division adds great flexibility for users to change in the policy parameters 

easily. Simulation model will save a lot of money and effort associated with conducting 

experiments in factories. Besides, simulation model can have animations which make 

communication and exchanging ideas more effectively. Simulation model can handle uncertainty 

in customer demand and order fulfillment.  

Results showed that the increase in raw material prices will lead to change in production 

parameters; however, policy parameter will not change. Therefore, there will be increase in total 
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cost, raw material cost, crushing cost and decrease in energy cost. Increase in natural gas prices 

will have effect on production and policy parameters.  

There are different issues can be taken into consideration for future research: 

 Having multiple delivery times to fulfill MTO order.  

 Price discounts according to product demand. 

 Expanding the model to consider more than one customer for MTO products. 

 Including penalty cost when the delivery time for MTO order exceeds predefined dates.  
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Appendices 

APPENDIX A 

Table A.1 Number of Replications  

replication 

number 

MTS inventory 

mean 

MTS half 

width 

MTS 

upper CI 

MTS 

lower CI 

MTO 

inventory 

mean 

MTO 

half 

width 

3 26535.54 778.3 27313.84 25757.24 43.6596 53.71 

4 26544.17 407.9 26952.07 26136.27 40.4197 29.92 

5 26558.24 278.39 26836.63 26279.85 36.6948 22.71 

6 26678.48 374.03 27052.51 26304.45 36.4339 17.19 

7 26565.48 408.64 26974.12 26156.84 35.7782 13.92 

8 26607.4 356.11 26963.51 26251.29 33.1147 13.24 

9 26583.85 311.01 26894.86 26272.84 42.0736 23.59 

10 26553.33 281.46 26834.79 26271.87 40.7492 20.91 

11 26571.94 254.16 26826.1 26317.78 38.4823 19.3 

12 26559.58 230.82 26790.4 26328.76 36.9554 17.73 

13 26605.79 233.07 26838.86 26372.72 37.3872 16.17 

14 26592.31 215.87 26808.18 26376.44 35.7277 15.27 

15 26585.19 200.15 26785.34 26385.04 33.7994 14.71 

16 26607.1 191.77 26798.87 26415.33 31.9983 14.2 

17 26605.26 179.25 26784.51 26426.01 30.6574 13.57 

18 26616.03 169.73 26785.76 26446.3 29.5579 12.94 

19 26612.76 160.1 26772.86 26452.66 29.3735 12.2 

20 26591.19 157.82 26749.01 26433.37 29.8249 11.57 

21 26590.86 149.61 26740.47 26441.25 28.9427 11.12 

22 26562.6 153.91 26716.51 26408.69 28.8422 10.57 

23 26558.82 146.85 26705.67 26411.97 28.084 10.19 

24 26527.75 154.29 26682.04 26373.46 27.3011 9.87 

25 26572.24 173.87 26746.11 26398.37 26.3796 9.63 

26 26586.08 169.14 26755.22 26416.94 25.7847 9.32 

27 26564.61 168.33 26732.94 26396.28 26.6373 9.12 

28 26574.06 163.06 26737.12 26411 28.1973 9.34 

29 26622.38 185.6 26807.98 26436.78 27.7734 9.03 

30 26635.87 181.15 26817.02 26454.72 28.244 8.77 
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APPENDIX B 

Table B.1 Warm up period 

time Rep. 1 Rep. 2 Rep. 3 Rep. 4 Rep. 5 Rep. 6 Rep. 7 Rep. 8 Rep.9 

0 0 0 0 0 0 0 0 0 0 

1 14685 15353 14685 14685 4538 4538 12683 13350 15353 

2 13883 5738 19890 17220 7740 7740 14550 14550 19223 

3 17085 8273 21758 20423 12278 9608 15750 18420 23093 

4 22958 10140 24960 24293 12810 10808 16950 20955 25628 

5 24825 11340 29498 28163 14678 12675 20153 22155 27495 

6 24690 15878 28285 28028 17213 17880 23355 24690 28028 

7 27893 17745 28150 28560 17745 17745 23888 25223 28560 

8 30428 18272 28015 30287 18272 18272 26423 28425 28952 

9 28952 18272 27880 28285 18137 18137 28290 28952 29620 

10 28285 18137 29080 28150 18002 18002 28823 30287 28285 

11 28150 18272 28285 28015 17867 17867 28952 28952 28150 

12 28682 18137 28150 27880 17732 17732 28285 28285 28015 

13 28952 18002 32020 28412 18265 18272 28150 28150 27880 

14 28285 17867 34292 32950 18272 18137 28015 27347 31082 

15 31487 18272 34292 33625 18272 18272 29882 28547 33625 

16 34960 18272 34292 34960 18272 18272 30955 34292 33625 

17 33625 18272 34292 34292 18272 18272 28285 34292 34960 

18 34960 18272 34292 33625 18272 18272 28150 34292 33625 

19 33625 18272 34292 34960 18272 18272 32687 34292 34960 

20 34960 18272 34292 34292 18272 18272 34292 34292 33625 

21 33625 18272 34292 34292 18272 18272 34292 34292 34960 

22 34960 18272 34292 34292 18272 18272 33625 34292 33625 

23 34292 18272 34292 34292 18272 18272 34960 34292 34960 

24 33625 18272 34292 34292 18272 18272 33625 34292 34292 

25 34960 18272 34292 34292 18272 18272 34960 34292 34292 

26 34292 18272 34292 34292 18272 18272 33625 34292 34292 

27 34292 18272 34292 34292 18272 18272 34960 34292 34292 

28 34292 18272 34292 34292 18272 18272 34292 34292 34292 

29 34292 18272 34292 34292 18272 18272 33625 34292 34292 

30 34292 18272 34292 34292 18272 18272 34960 34292 34292 

31 34292 18272 34292 34292 18272 18272 34292 34292 34292 

32 34292 18272 34292 34292 18272 18272 34292 34292 34292 

33 34292 18272 34292 34292 18272 18272 34292 34292 34292 

34 34292 18272 34292 34292 18272 18272 34292 34292 34292 

35 34292 18272 34292 34292 18272 18272 34292 34292 34292 

36 34292 18272 34292 34292 18272 18272 34292 34292 34292 
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37 34292 18272 34292 34292 18272 18272 34292 34292 34292 

38 34292 18272 34292 34292 18272 18272 34292 34292 34292 

39 34292 18272 34292 34292 18272 18272 34292 34292 34292 

40 34292 18272 34292 34292 18272 18272 34292 34292 34292 

41 34292 18272 34292 34292 18272 18272 34292 34292 34292 

42 34292 18272 34292 34292 18272 18272 34292 34292 34292 
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APPENDIX C 

 

Figure C.1: Simulation Output Report 
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